Abstract

Electrified methane steam reforming (eMSR) is a promising concept for low-carbon hydrogen production. We investigate an innovative eMSR reactor where SiSiC foams, coated with Rh/Al2O3 catalyst, act as electrical resistances to generate the reaction heat via the Joule effect. The novel system was studied at different temperatures, space velocities, operating pressures and catalyst loadings. Thanks to efficient heating, active catalyst and optimal substrate geometry, complete methane conversions were observed even at a high space velocity of 200000 Nl/h/kgcat. A specific energy demand as low as 1.24 kWh/Nm3H2, with an unprecedented energy efficiency of 81%, was achieved on a washcoated foam with catalyst density of 86.3 g/L (GHSV = 150000 Nl/h/kgcat, S/C = 4.1, ambient pressure). A mathematical model was validated against measured performance indicators and used to design an intensified eMSR unit for small scale H2 production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call