Abstract

We present a direct ab initio dynamics study on the hydrogen abstraction reactions N(2)H(4)+R-->N(2)H(3)+RH (R=NH(2),CH(3)), which are predicted to have six possible reaction channels for NH(2) abstraction and four for CH(3) abstraction caused by the different N(2)H(4) isomers and various attacking orientations of foreign radical to N(2)H(4). The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of all reaction channels are obtained at the UMP2(full)6-31+G(d,p) level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of MC-QCISD method. The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that the favorable reaction channels are channels (n1) and (n4) as well as (c1) and (c3) (refer to Scheme 1) in the whole temperature range. The total ICVT/SCT rate constants of all channels for the two reactions at the MC-QCISDUMP2(full)6-31+G(d,p) level are both in good agreement with the available experimental data, and corresponding three-parameter expressions of k(ICVTSCT) in 220-3000 K are fitted as 6.46 x 10(-15)(T298)(3.60) exp(-386T) cm(3) mol(-1) s(-1) for NH(2) abstraction and 1.04 x 10(-14)(T298)(4.00) exp(-2037T) cm(3) mol(-1) s(-1) for CH(3) abstraction. Additionally, the long range interaction between the H atom of X-H bond in foreign radicals and the lone pair on the nonreactive N atom of the transition states is further discussed to explain the various transition-state numbers of the two similar hydrogen abstraction reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.