Abstract

The drop-on-demand (DOD) based three-dimensional (3D) printing methods can fabricate an object with a high level of accuracy and shape complexity using multiple materials. However, a key limitation of the DOD approaches such as ink jetting is only the inks with low viscosity can be used. Such low-viscosity restriction severely limits the material options for the DOD-based 3D printing methods. To address the viscosity issue, we have developed a novel drop-on-demand 3D printing method called direct droplet writing (DDW) for highly viscous material. One main idea of the DDW process is to use direct droplet-punching to enable the printing of materials that may have a viscosity over 190,000 mPa·s; and another main idea of the DDW process is to use capillary-splitting to avoid common issues of various ink-jetting approaches, including splashing, droplet deflection, and satellite droplets. The DDW process can reliably fabricate 3D structures using a wide range of materials that are challenging for the jetting-based and extrusion-based methods. Analytical models to characterize the DDW process are presented. A set of test cases have been conducted using the in-house developed prototype system to characterize the relationship between droplet size and process parameters such as droplet punching speed and dispensing gap. Various materials, including high-loading photocurable tricalcium phosphate (TCP) ink and polyurethane (PU) leather ink, were successfully used in the DDW process. In addition to a much broader range of 3D printable materials, the DDW process is robust, without ink clogging or leaking, and can achieve consistent printing results using digitally controlled droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.