Abstract

Direct displacement-based design requires a simplified procedure to estimate the seismic deformation of an inelastic SDF system, representing the first (elastic) mode of vibration of the structure. This step is usually accomplished by analysis of an “equivalent” linear system using elastic design spectra. In this paper, an equally simple procedure is developed that is based on the well-known concepts of inelastic design spectra. We demonstrate that the procedure provides the following: (1) accurate values of displacement and ductility demands, and (2) a structural design that satisfies the design criteria for allowable plastic rotation. In contrast, the existing procedure using elastic design spectra for equivalent linear systems in shown to underestimate significantly the displacement and ductility demands. The existing procedure is shown to be deficient in yet another sense; the acceptable value of the plastic rotation, leaving an erroneous impression that the allowable plastic rotation constraint has been satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.