Abstract

The main purpose of this work is to develop neutron diffraction methodology in order to determine stresses localised in polycrystalline grains during elastoplastic deformation, directly from experiment. As a result, for the first time, the von Mises stress for chosen grain orientations and Critical Resolved Shear Stresses (CRSS) for active slip systems were unambiguously measured without the help of crystallographic models, which introduce different theoretical assumptions. The stresses measured for groups of grains and the determined CRSS values are important characteristics of a material, which allow to study plastic deformation in textured material at different scales: slip system and grain, which play a key role in mechanical properties and formability of the material.The new method was successfully tested and applied to textured AZ31 alloy subjected to tensile deformation and the components of stress tensor were for the first time determined from measured lattice strains corresponding to chosen orientations of crystallite lattice. The obtained results positively verified hypotheses that, during plastic deformation, a large difference in the hardness as well as in the localised stresses occurs for grains having different lattice orientations. It was found directly from experiment that, the activation of basal glide, having small CRSS, does not lead to significant plastic deformation, and the activation of other non-basal systems (with higher CRSS) induces the development of plasticity at the macroscopic scale. The early plastic deformation occurring due to slip on basal system is small but it can destructively affect fatigue life, limiting applicability of the material for structural components. Finally, the comparison of experimental results with a modified version of Elastic-Plastic Self-Consistent (EPSC) model showed its capability to simulate the mechanical behaviour of such materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.