Abstract

During embryonic development, endothelial cells (ECs) undergo vasculogenesis to form a primitive plexus and assemble into networks comprised of mural cell-stabilized vessels with molecularly distinct artery and vein signatures. This organized vasculature is established prior to the initiation of blood flow and depends on a sequence of complex signaling events elucidated primarily in animal models, but less studied and understood in humans. Here, we have developed a simple vascular differentiation protocol for human pluripotent stem cells that generates ECs, pericytes, and smooth muscle cells simultaneously. When this protocol is applied in a 3D hydrogel, we demonstrate that it recapitulates the dynamic processes of early human vessel formation, including acquisition of distinct arterial and venous fates, resulting in a vasculogenesis angiogenesis model plexus (VAMP). The VAMP captures the major stages of vasculogenesis, angiogenesis, and vascular network formation and is a simple, rapid, scalable model system for studying early human vascular development in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.