Abstract

A method, based on inductively coupled plasma sector field mass spectrometry coupled with a microflow nebulizer and a desolvation system, has been developed for the direct determination of rare earth elements (REE) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) down to the subpicogram per gram level (1 pg/g = 10(-12) g g(-1)) in approximately 1 mL of molten Antarctic ice. Contamination problems were carefully taken into account by adopting ultraclean procedures during the sample pretreatment phases. The use of a desolvation system for sample introduction during the analysis greatly reduced spectral interferences from oxide formation; the residual interfering contributions were calculated and subtracted whenever necessary. A matched calibration curve method was used for the quantification of the analytes. Instrumental detection limits ranged from 0.001 pg/g for Ho, Tm, and Lu to 0.03 pg/g for Gd. The precision, in terms of relative standard deviation on 10 replicates, ranged from 2% for La, Ce, Pr, and Lu, up to 10% for Er, Tm, and Yb. This methodology allowed the direct determination of REE in a 1-mL sample of ancient Antarctic ice with concentration ranges between 0.006 and 0.4 pg/g for Tm and 0.9-60 pg/g for Ce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.