Abstract

The surface free energy of solids, γ, plays a crucial role in all physical and chemical processes involving material surfaces. For the first time, we obtained γ directly from molecular dynamics simulations using a crystal cleavage method. The approach was successfully realized in a Lennard-Jones system by inserting two movable external walls, each consisting of a single crystal layer, into a bulk crystal to create flat, defect-free surfaces. The cleavage technique designed allowed us to calculate the surface free energy according to its definition and avoid surface premelting. The temperature dependence of γ was determined for the (100) and (110) crystal planes along the whole sublimation line and its metastable extension, up to T = 1.02 · Tm, where Tm is the melting point. Good agreement with indirect values of γ(T) was found. The proposed computational cleavage method can be applied to other solids of interest, providing valuable insight into the understanding of chemical and physical surface processes, and demonstrates the successful import of the cleavage method, traditionally used in technical preparation and study of crystal surfaces, into a modern atomistic simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call