Abstract

Much information on ionic solvation in electrolyte solutions has been inferred from macroscopic thermodynamic and transport properties and from spectroscopy. These ion-water interactions can now be probed directly and unambiguously by neutron diffraction. Such measurements have been done with neodymium trichloride solutions in heavy water that are identical in every respect except the isotopic state of the neodymium ions; these experiments yield in a straightforward manner the distribution of oxygen and deuterium atoms from the water molecules in the first hydration sphere of the neodymium ion. Each ion is surrounded by 8.6 oxygen atoms at a distance of 2.48 angstroms and 16.7 deuterium atoms at 3.13 angstroms indicating a well-defined first hydration sphere of water molecules, the deuterium atoms pointing away from the cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.