Abstract

Isothermal titration calorimetry (ITC) is a method to determine thermodynamic values (ΔG, ΔH, and ΔS) for ligand-receptor binding in biological and abiological systems. It is challenging to directly determine subnanomolar dissociation constants using a standard incremental injection approach ITC (IIA-ITC) measurement. We recently demonstrated a continuous injection approach ITC (CIA-ITC) [ J. Phys. Chem. B 2021, 125, 8075-8087]enables the estimation of thermodynamic parameters in situ. In this work, we demonstrate a label-free and surface modification-free CIA-ITC to determine the complete binding thermodynamics of a ligand with a subnanomolar dissociation constant KD. The KD for desthiobiotin (DTB)-avidin binding was determined to be 6.5 pM with respect to the ligand by CIA-ITC, a quantity unsuccessfully measured with IIA-ITC and surface plasmon resonance spectroscopy (SPR). This value compares well with literature-reported spectroscopic determination of DTB-avidin binding. Criteria with respect to the concentration of the ligand and receptor and flow rate for obtaining true equilibrium dissociation constants without displacement titration are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.