Abstract

In order to better estimate bacterial biomass in marine environments, we developed a novel technique for direct measurement of carbon and nitrogen contents of natural bacterial assemblages. Bacterial cells were separated from phytoplankton and detritus with glass fiber and membrane filters (pore size, 0.8 &mgr;m) and then concentrated by tangential flow filtration. The concentrate was used for the determination of amounts of organic carbon and nitrogen by a high-temperature catalytic oxidation method, and after it was stained with 4',6-diamidino-2-phenylindole, cell abundance was determined by epifluorescence microscopy. We found that the average contents of carbon and nitrogen for oceanic bacterial assemblages were 12.4 +/- 6.3 and 2.1 +/- 1.1 fg cell-1 (mean +/- standard deviation; n = 6), respectively. Corresponding values for coastal bacterial assemblages were 30.2 +/- 12.3 fg of C cell-1 and 5.8 +/- 1.5 fg of N cell-1 (n = 5), significantly higher than those for oceanic bacteria (two-tailed Student's t test; P < 0.03). There was no significant difference (P > 0.2) in the bacterial C:N ratio (atom atom-1) between oceanic (6.8 +/- 1.2) and coastal (5.9 +/- 1.1) assemblages. Our estimates support the previous proposition that bacteria contribute substantially to total biomass in marine environments, but they also suggest that the use of a single conversion factor for diverse marine environments can lead to large errors in assessing the role of bacteria in food webs and biogeochemical cycles. The use of a factor, 20 fg of C cell-1, which has been widely adopted in recent studies may result in the overestimation (by as much as 330%) of bacterial biomass in open oceans and in the underestimation (by as much as 40%) of bacterial biomass in coastal environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.