Abstract

A key feature of monolayer semiconductors, such as transition-metal dichalcogenides, is the poorly screened Coulomb potential, which leads to a large exciton binding energy (E_{b}) and strong renormalization of the quasiparticle band gap (E_{g}) by carriers. The latter has been difficult to determine due to a cancellation in changes of E_{b} and E_{g}, resulting in little change in optical transition energy at different carrier densities. Here, we quantify band-gap renormalization in macroscopic single crystal MoS_{2} monolayers on SiO_{2} using time and angle-resolved photoemission spectroscopy. At an excitation density above the Mott threshold, E_{g} decreases by as much as 360meV. We compare the carrier density-dependent E_{g} with previous theoretical calculations and show the necessity of knowing both doping and excitation densities in quantifying the band gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.