Abstract

We experimentally demonstrate a direct-detection orthogonal-frequency-division-multiplexing quadrature-phase-shift-keying (OFDM-QPSK) system that is capable of delivering a 32 Gbaud OFDM-QPSK signal over 7 km single-mode fiber-28 (SMF-28). Intra-symbol frequency-domain averaging (ISFA) channel response estimation is applied to suppress in-band noise, while discrete Fourier transform-spread (DFT-spread) is used to reduce the peak-to-average power ratio (PAPR) of the transmitted OFDM signal. With the aid of ISFA-based channel estimation and PAPR reduction enabled by DFT-spread, the bit-error ratio of the system after 7 km SMF-28 transmission can be improved from 2×10−3 to error-free when the received optical power is −8.5 dBm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call