Abstract

Recently, the first direct detection of the long-searched low-lying isomeric first excited state of 229Th could be realized via its internal conversion decay branch, which confirms the isomer's existence and lays the foundation for precise studies of its decay parameters, in particular its half-life and excitation energy. Follow-up studies confirmed the theoretically expected lifetime reduction by about 109 of neutral 229mTh compared to charged isomers with τ∼10 μS thus emphasizing the need to efficiently suppress internal conversion when aiming for the detection of a potential photonic decay branch of 229mTh. Work towards precisely determining the excitation energy of the thorium isomer is ongoing, preparing for an all-optical control of this potentially highly precise nuclear frequency standard transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.