Abstract
Direct detection of biomolecules, such as alpha-amino acids, peptides, and proteins, was accomplished using a capillary electrophoresis-chemiluminescence detection system, in which a luminol-hydrogen peroxide-Cu(II)-catalyzed chemiluminescence reaction was utilized. Biomolecules migrated in the capillary, where they mixed with luminol and the Cu(II) catalyst included in the running buffer. The capillary outlet was inserted into a batch-type chemiluminescence detection cell with hydrogen peroxide-supplemented electrolyte solution. Chemiluminescence was observed at the tip of the capillary outlet. The chemiluminescence peak from biomolecules appeared due to the enhancement of Cu(II) catalytic activity for luminol-hydrogen peroxide chemiluminescence. The Cu(II) was more catalytically active when it interacted with biomolecules forming Cu(II)-biomolecule complexes. In this study, biomolecules were directly separated and detected in a capillary electrophoresis-chemiluminescence detection system. Twenty alpha-amino acids, 4 peptides, and 11 proteins were examined. Most of them were detected with satisfactory CL intensity response. Glutamic acid, an alpha-amino acid, was detected at concentrations ranging from 2.0 x 10(-7) to 1.2 x 10(-5) M with a detection limit (S/N = 3) of 1.0 x 10(-7) M (0.6 fmol). Glycylglycine, a peptide, was detected at concentrations ranging from 1.7 x 10(-7) to 1.2 x 10(-5) M with a detection limit (S/N = 3) of 1.7 x 10(-7) M (0.9 fmol). Hemoglobin, a heme protein, in which the heme structure was independently catalytically active, was detected at concentrations ranging from 1.2 x 10(-7) to 1.0 x 10(-5) M with a detection limit (S/N = 3) of 1.2 x 10(-7) M (0.6 fmol). Representative mixtures of alpha-amino acids and peptides were well detected with superior separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.