Abstract

A general strategy of Al–O–Al structure in various aluminosilicate was evaluated by combining triple-quantum magic angle spinning (3QMAS) and double-quantum homo-nuclear correlation under magic angle spinning (DQMAS) solid-state nuclear magnetic resonance (NMR) measurements with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency). The results show that in many cases the direct detection of Al–O–Al sites in aluminosilicate crystals and glasses is possible; hence the extent of aluminum avoidance can be directly elucidated. Specifically, experimental evidence of Al–O–Al linkages in several aluminosilicate materials with Si/Al >1 was straightforwardly confirmed; and the existence of Al–O–Al is considered to have little correlation with the Si/Al ratio, but it may be strongly related to the cation and local structural arrangement. In addition, the presence of tri-clusters of (Si, Al)O4-tetrahedra in aluminosilicate framework was proposed, which was thought to act as nuclei for formation and incorporation of cations to achieve charge neutrality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.