Abstract

Thick cubic boron nitride (cBN) films in micrometer-scale are deposited on tungsten carbide-cobalt (WC-Co) substrates without adhesion interlayers by inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) using the chemistry of fluorine. The residual film stress is reduced because of very low ion-impact energies (a few eV to ∼25 eV) controlled by the plasma sheath potential. Two types of substrate pretreatment are used successively; the removal of surface Co binder using an acid solution suppresses the catalytic effect of Co and triggers cBN formation, and the surface roughening using mechanical scratching and hydrogen plasma etching increases both the in-depth cBN fraction and deposition rate. The substrate surface condition is evaluated by the wettability of the probe liquids with different polarities and quantified by the apparent surface free energy calculated from the contact angle. The surface roughening enhances the compatibility in energy between the cBN and substrate, which are bridged by the interfacial sp(2)-bonded hexagonal BN buffer layer, and then, the cBN overlayer is nucleated and evolved easier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.