Abstract
MuSK is a tyrosine kinase localized to the postsynaptic surface of the neuromuscular junction. We have searched for modulators of MuSK function using a library of human single chain variable region antibodies (scFv) that can be displayed on M13 phage or expressed as soluble protein. A panel of 21 independent MuSK-specific scFv, identified in a screen for binding to MuSK-Fc immunoadhesin, were examined for ability to induce proliferation in a factor dependent cell line (Ba/F3) through a chimeric receptor, MuSK-Mpl. Four of the scFv induced a proliferative response, suggesting an ability to induce dimerization of MuSK. These scFv were also able to induce tyrosine phosphorylation of full-length MuSK and retained this ability when re-engineered to be expressed as authentic (and dimeric) human IgG molecules. Addition of agonist scFv to a cultured myotube cell line induced AChR clustering and tyrosine phosphorylation. These results provide direct evidence that MuSK activation is capable of triggering a key event in neuromuscular junction formation and further demonstrate that large libraries of phage-displayed scFv provide a robust method for generating highly specific agonist agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.