Abstract

With the global energy shortages, sustainable energy scavenging from the natural environment is desperately needed. Unlike solar cell or wind power, which depends heavily on weather conditions, triboelectric nanogenerator (TENG) has received extensive attention as an efficient all–weather energy–harvesting technology. Based on the coupling principle of contact electrification (CE) and electrostatic induction, conventional TENGs convert mechanical energy into an alternating current (AC) output. However, the typically distributed sensor systems in the ubiquitous Internet of Things (IoTs) request a direct current (DC) input. Direct current triboelectric nanogenerators (DC-TENGs) with the constant output characteristic are critical to satisfy the above requirements. Here, DC-TENGs were reviewed from the perspective of material selections. As device performance is mainly determined by material properties, the development of DC-TENGs could be divided into three categories based on dielectric materials, semiconductor materials, and materials for iontronic rectifications. The operating mechanism and influencing factors of various types of DC-TENG were summarized, representative applications were demonstrated, and the main challenges of future developments were also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call