Abstract

Electroless deposition of a NiWP barrier layer on a SiO2 substrate was investigated for all-wet Cu interconnect fabrication. In this study, the entire fabrication process including substrate activation, barrier layer electroless deposition, and direct Cu electrodeposition was modified. The SiO2 substrate was activated via Pd nanoparticles that were immobilized on the substrate by using a preformed self-assembled monolayer composed of 3-aminopropyl-triethoxysilane. Reduction of NiWP layer resistivity was achieved by applying ultrasound during the substrate activation process and by adding poly(ethylene glycol) to the electroless deposition bath. The Cu electrodeposition was performed directly on the NiWP layer after performing coulometric oxide reduction, thus improving the adhesion and nucleation density of Cu on the NiWP layer. The electrodeposition process was conducted in two steps: Cu nucleation and Cu thin film formation at a high overpotential followed by additional Cu film growth at a low overpotential. As a result, a uniform, smooth Cu film covered the NiWP layer. In addition, bottom-up Cu filling was accomplished on a 120 nm wide, patterned substrate with a 2.5 aspect ratio. Barrier layer performance was evaluated by using a Cu / NiWP / Pd / SiO2 stacked specimen formed by applying the proposed procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.