Abstract

Solid-state magnesium rechargeable battery is a promising post-Li battery technology due to the high abundance of Mg element, the competitive volumetric capacity and enhanced safety of Mg metal anodes. However, current solid electrolyte formulas failed to realize considerably reversible Mg anodes caused by the passive layer formed on their surface. Herein, a novel Mg2+-conducting solid-state electrolyte (MCE) is proposed by directly crystalizing deep eutectic solvents composing of Mg(TFSI)2 and urea at room temperature. Experimental and simulation results indicate the formation of anion-rich groups in urea-Mg2+ coordination structures, facilitating rapid Mg2+ migration in the MCE. When applied in the Mg//Mg symmetric cells, the new electrolyte derives a macroporous and fluoride-rich organic/inorganic hybrid interface layer on the Mg metal surface. The unique interfacial structure endows the interface layer with Mg2+ diffusion capability for reversible Mg metal stripping/plating. The practical feasibility of MCE is finally demonstrated by cycling in Mg//V2O5 full cells with competitive electrochemical performance. This work illustrates a new concept of crystalizing deep eutectic solvents into solid-state electrolytes at room temperature for multivalent metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call