Abstract
A rapid strategy for the covalent immobilization of DNA onto silicon-based materials using the UV-initiated radical thiol-ene reaction is presented in this study. Following this approach, thiol- and alkene-modified oligonucleotide probes were covalently attached in microarray format, reaching immobilization densities around 6 pmol·cm(-2). The developed methodology presents the advantages of spatially controlled probe anchoring (using a photomask), direct attachment without using cross-linkers (one-pot fashion), and short irradiation times (20 min). Using the described strategy, hybridization efficiencies up to 65% with full complementary strands were reached. The approach was evaluated by scoring single-base pair mismatches with discrimination ratios around 15. Moreover, the efficacy of the proposed DNA detection scheme is further demonstrated through the assay on a genomic target of bacterial Escherichia coli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.