Abstract
One century after the discovery of cosmic rays, many questions remain open on their origin, nature, and transport. Experiments to detect them directly have constantly improved, and are today of highly diversified designs. Indeed, precise measurements of cosmic rays in an energy range from ∼ 10 4 to ∼ 10 15 eV allow one to study the mechanism of acceleration of primary cosmic rays up to very high energy, to characterise their possible sources, and to clarify their interactions with the interstellar medium. Such measurements of elemental cosmic-ray spectra require complementary and redundant charge- and energy-identification detectors, such as the balloon-borne Cosmic-Ray Energetics And Mass (CREAM) experiment, which measures cosmic rays from 10 12 to 10 15 eV for all elements up to and including iron. Here I present the current status of direct cosmic-ray measurements, with the focus on the latest CREAM results. Finally, I briefly discuss the cosmic-ray identification above the knee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nuclear Inst. and Methods in Physics Research, A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.