Abstract

A method to obtain (approximate) analytical expressions for the radial distribution functions in a multicomponent mixture of additive hard spheres that was recently introduced is used to obtain the direct correlation functions and bridge functions in these systems. This method, which yields results practically equivalent to the generalized mean spherical approximation and includes thermodynamic consistency, is an alternative to the usual integral equation approaches and requires as input only the contact values of the radial distribution functions and the isothermal compressibility. Calculations of the bridge functions for a binary mixture using the Boublik-Mansoori-Carnahan-Starling-Leland equation of state are compared to parallel results obtained from the solution of the Percus-Yevick equation. We find that the conjecture recently proposed by Guzman and del Rio (1998, 98, Molec. Phys., 95, 645), stating that the zeros of the bridge functions occur approximately at the same value of the shifted distance for all pairs of interactions, is at odds with our results. Moreover, in the case of disparate sizes, even the Percus-Yevick bridge functions do not have this property. It is also found that the bridge functions are not necessarily non-positive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.