Abstract

Histamine chelation of copper(I) by a terminal histidine residue in copper hydroxylating enzymes activates dioxygen to form unknown oxidants, generally assumed as copper(II) species. The direct formation of copper(III)-containing products from the oxygenation of histamine-ligated copper(I) complexes is demonstrated here, indicating that copper(III) is a viable oxidation state in such products from both kinetic and thermodynamic perspectives. At low temperatures, both trinuclear Cu(II)2Cu(III)O2 and dinuclear Cu(III)2O2 predominate, with the distribution dependent on the histamine ligand structure and oxygenation conditions. Kinetics studies suggest the bifurcation point to these two products is an unobserved peroxide-level dimer intermediate. The hydrogen atom reactivity difference between the trinuclear and binuclear complexes at parity of histamine ligand is striking. This behavior is best attributed to the accessibility of the bridging oxide ligands to exogenous substrates rather than a difference in oxidizing abilities of the clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.