Abstract
A series of CrZn oxide catalysts with different Cr/Zn ratios were synthesized by co-precipitation and calcined at different temperatures. The catalysts were tested in a physical mixture with SAPO-34 in the direct conversion of syngas to olefins. X-ray diffraction, x-ray photoelectron and absorption spectroscopy, and electron microscopy were used to evaluate the impact of the Cr/Zn ratio and calcination temperature on the physicochemical properties of the resultant materials. CrZn–SAPO-34 catalysts were able to selectively convert syngas to C2–C3 hydrocarbons with a high olefin/paraffin ratio and low methane yield. However, the catalytic performance of these systems exhibited a trade-off between activity and stability in the olefin yield over time. By tuning the Cr/Zn ratio, it is possible to improve the olefin production stability, but with some compromise in the overall activity. The nonstoichiometric and inversed ZnCr2O4 spinel phase was considered to be the active phase for CO hydrogenation, while the decay in olefin production over time is correlated with abundance of ZnO on the resultant catalyst. Spectroscopic analysis demonstrated that the inversed spinel evolves toward its normal form under reaction conditions, which is accompanied by the formation of segregated ZnO; this phase may also increase the olefin hydrogenation activity.The challenge for the rational design of an optimal CrZn–SAPO-34 system is the stabilization of inversed ZnCr2O4, while minimizing the presence of the ZnO phase in the catalyst formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.