Abstract

Direct conversion of methane to methanol (DMTM) under mild conditions is one of the most attractive and challenging processes in catalysis. By using density functional theory calculations, we systematically investigate the catalytic performance of Cu single atoms supported on O-doped BN in different coordination environments as a DMTM catalyst. Computations demonstrate that Cu coordinated with one O atom and two N atoms on O-doped BN (Cu1/O1N2-BN) exhibited the highest catalytic activity for DMTM at room temperature with quite a low rate-determining step energy barrier of 0.46 eV. The moderate adsorption of *O atoms, selective stabilization of CH3 species, and easy desorption of CH3OH are responsible for the unique activity of Cu1/O1N2-BN for DMTM. In addition, the adsorption free energy of *O atoms produced by the dissociation of O-donor molecules is a suitable descriptor for predicting the catalytic performance of materials and accelerating the discovery of catalysts for DMTM. This work opens new avenues to develop highly efficient catalysts for DMTM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.