Abstract

BackgroundGeneration of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson’s disease. Several studies have reported the generation of dopaminergic (DA) neurons from mouse and human fibroblasts by ectopic expression of transcription factors, in which genetic manipulation is associated with potential risks.MethodsThe small molecules and protein factors were selected based on their function to directly induce human fetal lung IMR-90 fibroblasts into DA neuron-like cells. Microscopical, immunocytochemical, and RT-qPCR analyses were used to characterize the morphology, phenotype, and gene expression features of the induced cells. The whole-cell patch-clamp recordings were exploited to measure the electrophysiological properties.ResultsHuman IMR-90 fibroblasts were rapidly converted into DA neuron-like cells after the chemical induction using small molecules and protein factors, with a yield of approximately 95% positive TUJ1-positive cells. The induced DA neuron-like cells were immunopositive for pan-neuronal markers MAP2, NEUN, and Synapsin 1 and DA markers TH, DDC, DAT, and NURR1. The chemical induction process did not involve a neural progenitor/stem cell intermediate stage. The induced neurons could fire single action potentials, which reflected partially the electrophysiological properties of neurons.ConclusionWe developed a chemical cocktail of small molecules and protein factors to convert human fibroblasts into DA neuron-like cells without passing through a neural progenitor/stem cell intermediate stage. The induced DA neuron-like cells from human fibroblasts might provide a cellular source for cell-based therapy of Parkinson’s disease in the future.

Highlights

  • Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson’s disease

  • To determine whether IMR-90 fibroblasts were mixed with neuronal cells, we performed immunostaining assays for neural makers III β-tubulin (TUJ1) and microtubule-associated protein 2 (MAP2) in IMR-90 fibroblasts

  • The absence of neural progenitor/stem cells (NPC/ Neural stem cell (NSC)), glial cells, and neural crest cells were determined by measuring the expression of Neural progenitor cell (NPC)/NSC markers PAX6 (Paired box protein Pax-6), SOX2 (Sex-determining region Y-box 2), and NESTIN, glial cell marker GFAP, and neural crest cell marker p75

Read more

Summary

Introduction

Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson’s disease. Several studies have reported the generation of dopaminergic (DA) neurons from mouse and human fibroblasts by ectopic expression of transcription factors, in which genetic manipulation is associated with potential risks. One theory is that the expression of specific transcription factors is involved in the selection of cell fates and their subsequent differentiation [2,3,4]. Ectopic expression of transcription factors has been widely used to reprogram or transdifferentiate or convert somatic cells into pluripotent stem cells, multipotent stem cells, and other somatic cells [5]. The small molecule-based strategy for cell fate conversion may be potentially translated into clinical therapy

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call