Abstract

Converting CO 2 to valuable materials is attractive in environmental protection and resource utilization. In this study, a vapor–liquid interface reaction system for mass production of high-quality graphene is reported. The graphene obtained has high crystallinity and few defects during the reaction of CO 2 and Mg melt. The growth mechanism of graphene is demonstrated in vapor–liquid interface area by combining the CO 2 bubbles as a soft template to guide growth with the confinement effect of dense MgO nanoparticles. The quality of the graphene is verified by epoxy composites with high electromagnetic shielding effectiveness. Additionally, the V–L reaction method ingeniously solves the dispersion of graphene in metal, providing a preparation strategy of Mg matrix composites with structure and function integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.