Abstract

AbstractCatalysts are very important in the use of cellulose, the main component of biomass, as a raw material for the large-scale production of liquid fuels and chemicals. 5-Hydroxymethylfurfural (HMF) is an extremely important intermediate in the fine chemical industry. HMF can be synthesized by acid-catalyzed dehydration of fructose, glucose, cellulose, or sucrose. The conversion of cellulose to HMF is challenging due to its chemical structure. The objective of the present study was to devise a more facile synthesis method using transition metal-doped montmorillonite catalysts (10Cr-Mnt, 10Cu-Mnt, 10Fe-Mnt, and 10Zn-Mnt) by wet impregnation. Samples were characterized by X-ray powder diffraction, specific surface area, and NH3-TPD analyses. The synthesized catalysts were used for the conversion of cellulose to 5-HMF in an aqueous medium. Among the metals studied, Cr showed the greatest catalytic activity. With the use of this catalyst, efficient conversion of cellulose to 5-HMF was achieved, affording a conversion yield of 93.47% and 5-HMF yield of 9.07% within 6 h at 200°C. The study described here could be useful for the efficient conversion of cellulose into 5-HMF, as well as into other biomass-derived chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call