Abstract
Direct contact membrane distillation (DCMD) process was chosen to produce a highly concentrated apple juice using hollow fiber modules. A high 64°Brix concentration was achieved. The trans-membrane driving force decreased with increasing extra-fiber temperature but increased with higher feed and distillate flow rates in the intra- and extra-fiber volumes, respectively. Flux inversion was sensitive to small differences in temperature between the intra- and extra-fiber volumes and could be prevented by increasing the intra-fiber feed temperature by 2–4°C. Flux rates were dependent upon the temperature polarisation coefficient (TPC) and the effect of the concentration polarisation coefficient (CPC) was negligible. Trans-membrane flux was also significantly increased by thermal-osmotic distillation (TOD) using a high concentration of CaCl 2 as the permeate solution. A new model describing the fluid dynamics and membrane behaviour within the DCMD system is presented. In particular, the influence of various properties of membrane morphology, such as the distribution of pores of different diameters and elastic and other mechanical properties upon flux were taken into account in this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.