Abstract

Biocompatible approaches to labeling bacteria with fluorescent nanoparticles are essential in order to create living bacterial bioconjugates for imaging, biosensors, medicine, and other applications. Herein we report the direct conjugation of carboxyl quantum dots (QDs) with E. coli outer membrane via surface-displayed binding peptides. The histidine-containing peptide H6G9 was displayed at the N-terminus of membrane-embedded enhanced circularly permuted outer membrane protein X (eCPX) scaffold, which was expressed upon chemical induction. The presence of the binding peptide creates an environment distinct from the negatively charged E. coli surface and provides strong binding affinity to carboxyl quantum dots (QDs). Transmission electron microscopy (TEM) analysis of E. coli-QD bioconjugates revealed high loading densities of these QDs immobilized on the cell surface, even when adding a very low concentration (10 μg/mL) of QDs in order to reduce the cell exposure. These hybrid cells strongly fluoresce with each of the distinct colors of loaded QDs with different emission wavelengths, which can be easily visualized by fluorescence microscopy or differentiated using flow cytometry. Importantly, the E. coli–QD bioconjugates were highly viable and maintained the ability to grow and divide. This study demonstrates a simple, direct, and highly efficient method for labelling bacteria with QDs, without significantly compromising the vitality of the cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.