Abstract
This paper addresses the problem of computing cues to the three-dimensional structure of surfaces in the world directly from the local structure of the brightness pattern of either a single monocular image or a binocular image pair. It is shown that starting from Gaussian derivatives of order up to two at a range of scales in scale-space, local estimates of (i) surface orientation from monocular texture foreshortening, (ii) surface orientation from monocular texture gradients, and (iii) surface orientation from the binocular disparity gradient can be computed without iteration or search, and by using essentially the same basic mechanism. The methodology is based on a multi-scale descriptor of image structure called the windowed second moment matrix, which is computed with adaptive selection of both scale levels and spatial positions. Notably, this descriptor comprises two scale parameters; a local scale parameter describing the amount of smoothing used in derivative computations, and an integration scale parameter determining over how large a region in space the statistics of regional descriptors is accumulated. Experimental results for both synthetic and natural images are presented, and the relation with models of biological vision is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.