Abstract

The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately.

Highlights

  • Dental microwear, the microscopic wear patterns resulting from food processing, is among the most frequently used and effective proxies to infer diet in extant and extinct animals, including humans and their ancestors

  • As carnivoran and bovid dietary comparisons are the focus of prior studies [21,23], we instead specify how Dental microwear texture analysis (DMTA) data compares to 2D metrics at the same resolution

  • Mean complexity and textural fill volume are smallest in A. jubatus, followed by P. leo, and C. crocuta (Table 1), consistent with degree of durophagous activity in these carnivorans (KruskalWallis tests, p

Read more

Summary

Introduction

The microscopic wear patterns resulting from food processing, is among the most frequently used and effective proxies to infer diet in extant and extinct animals, including humans and their ancestors. The pioneering microwear studies of the 1970s and 1980s used scanning electron microscopy (SEM) to document the correlation between size, shape, and orientation of wear features and dietary habits of extant taxa (e.g., [1,2]). These studies standardized methods related to data collection including the type of wear facet analyzed [8], analysis of homologous facets across studied taxa [3,9], specimen coating material and thickness, and beam settings of individual SEM machines [10]. The analysis and subsequent interpretation of microwear features assessed via SEM relies on observers counting individual pits and scratches from two-

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.