Abstract

Among the plethora of soluble and easy processable organic semiconductors, 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-P5) is one of the most promising materials for next-generation flexible electronics. However, based on the information reported in the literature, it is difficult to exploit in field-effect transistors the high-performance characteristics of this material. This article correlates the HMDS functionalization of the silicon substrate with the electrical characteristics of TIPS-P5-based bottom gate organic field-effect transistors (OFETs) and electrolyte-gated organic field-effect transistors (EGOFETs) fabricated over the same platform. TIPS-P5 transistors with a double-gate architecture were fabricated by simple drop-casting on Si/SiO2 substrates, and the substrates were either functionalized with hexamethyldisilazane (HMDS) or left untreated. The same devices were characterized both as standard bottom-gate transistors and as (top-gate) electrolyte-gated transistors, and the results with and without HMDS treatment were compared. It is shown that the functionalization of the silicon substrate negatively influences EGOFETs performance, while it is beneficial for bottom-gate OFETs. Different device architectures (e.g., bottom-gate vs. top-gate) require specific evaluation of the fabrication protocols starting from the effect of the HMDS functionalization to maximize the electrical characteristics of TIPS-P5-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.