Abstract

ObjectiveRecent gene therapy strategies have relied on the use of adenovirus or plasmid as vehicles for gene delivery to the heart. These approaches have been limited by low transduction frequencies and transient transgene expression. We sought to determine whether adeno-associated virus produces more stable, higher efficiency gene expression in the rodent heart than did previous conventional methods. MethodsTwo recombinant viral constructs were made: an adeno-associated virus containing the lacZ gene under the control of the cytomegalovirus promoter (AAV-lacZ) and an adenovirus expressing lacZ under the control of the same promoter (Adeno-lacZ). Twenty rats were injected (into the ventricular apex) with 1 × 107-8 genomic particles of each virus. Animals were put to death at serial time points and transgene expression quantitated by β-galactosidase activity, myocardial staining, and Western blot protein analysis. ResultsThree months after adeno-associated virus gene transfer, animals demonstrated stable β-galactosidase expression in 60% of cardiomyocytes without evidence of myocardial inflammation/necrosis. The distribution and degree of protein expression and number of positive cells at 3 months were equivalent to transgene expression at 4 weeks. Adeno-associated virus was not detected in organs other than the heart. In contrast, Adeno-lacZ animals displayed transient β-galactosidase activity in 60% of cardiomyocytes, which was undetectable 4 weeks after gene transfer. Adenovirus-treated animals manifest significant myocardial inflammation and had transgene expression in other organs. ConclusionDirect intramyocardial injection of an adeno-associated virus vector programs stable, long-term, cardiac-specific transgene expression in the rodent heart for up to 3 months. Our results suggest adeno-associated virus has significant advantages for long-term transgene expression in the heart compared to adenovirus vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.