Abstract

The Great East Japan Earthquake caused a serious accident at the first Fukushima nuclear power plant (NPP), which in turn released a large amount of radionuclides. Little attention has been paid to in-situ soil microorganisms exposed to radioactive contamination by the actual NPP accident. We herein investigated bacterial communities in the radioactive cesium (Cs)-contaminated and non-contaminated soils by high-throughput sequencing. The uppermost and ectorhizosphere soil samples were collected from the base of mugwort grown in the same soil type with the same soil-use history in order to compare the bacterial communities at geographically separated areas. The concentrations of radioactive Cs in the soils ranged from 10 to 563,000 Bq 137Cs/kg dry soil, with the highest concentration being detected at 1 km from the NPP. Alpha-diversity indices, i.e., Chao1, Shannon and Simpson reciprocal, of the sequence data showed the lower bacterial diversity in the most highly Cs-contaminated soil. Principal coordinate analysis with principle components 1 and 3 based on unweighted UniFrac distances indicated the significant difference in bacterial communities of the most contaminated area from those of the other areas. Operational taxonomic unit-based assay revealed higher abundance of the radio-resistant Geodermatophilus bullaregiensis relative in the most contaminated soil. Thus, it was strongly suggested that the radioactive accident facilitated the growth and/or survival of radio-resistant bacteria in the Cs-contaminated soils. The results of this study show that information on the soil type, vegetation and soil-use history enhances the direct comparison of geographically distant soil bacterial communities exposed to different levels of radioactive contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call