Abstract

We propose and demonstrate a generalized class of anti-diffracting optical pin-like beams (OPBs). Such beams exhibit autofocusing dynamics while morphing into a Bessel-like shape during long-distance propagation, where the size of their main lobe can be tuned by an exponent's parameter. In particular, their amplitude envelope can be engineered to preserve the pin-like peak intensity pattern. In both theory and experiment, the OPBs are directly compared with radially symmetric abruptly autofocusing beams (AABs) under the same conditions. Furthermore, enhanced transmission and robustness of the OPBs are observed while traversing a scattering colloidal suspension, as compared to both AABs and conventional Bessel beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.