Abstract

BackgroundPositron emission tomography (PET) is increasingly used to guide local treatment in glioma. The purpose of this study was a direct comparison of two potential tracers for detecting glioma infiltration, O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F] FET) and [11C] choline.MethodsEight consecutive patients with newly diagnosed diffuse glioma underwent dynamic [11C] choline and [18F] FET PET scans. Preceding craniotomy, multiple stereotactic biopsies were obtained from regions inside and outside PET abnormalities. Biopsies were assessed independently for tumour presence by two neuropathologists. Imaging measurements were derived at the biopsy locations from 10 to 40 min [11C] choline and 20–40, 40–60 and 60–90 min [18F] FET intervals, as standardized uptake value (SUV) and tumour-to-brain ratio (TBR). Diagnostic accuracies of both tracers were compared using receiver operating characteristic analysis and generalized linear mixed modelling with consensus histopathological assessment as reference.ResultsOf the 74 biopsies, 54 (73%) contained tumour. [11C] choline SUV and [18F] FET SUV and TBR at all intervals were higher in tumour than in normal samples. For [18F] FET, the diagnostic accuracy of TBR was higher than that of SUV for intervals 40–60 min (area under the curve: 0.88 versus 0.81, p = 0.026) and 60–90 min (0.90 versus 0.81, p = 0.047). The diagnostic accuracy of [18F] FET TBR 60–90 min was higher than that of [11C] choline SUV 20–40 min (0.87 versus 0.67, p = 0.005).Conclusions[18F] FET was more accurate than [11C] choline for detecting glioma infiltration. Highest accuracy was found for [18F] FET TBR for the interval 60–90 min post-injection.

Highlights

  • Positron emission tomography (PET) is increasingly used to guide local treatment in glioma

  • T1 contrast-enhanced weighted MRI sequences to identify high-glioma infiltration was lower than [11C-methyl]-methionine (11C-MET) PET [7]. This is in line with the Response Assessment in Neuro-Oncology (RANO) working group that recommends amino acid PET tracers to delineate glioma extent, [8] based on two studies in which 11C-MET and 18F-2-fluoro-2-deoxyglucose were directly compared [9, 10] and more indirect evidence such as extension of PET-based tumour volumes outside MRI

  • Two patients with a high-grade glioma were scanned with only one tracer due to insufficient [11C] choline and low-quality yield of [18F] FET

Read more

Summary

Introduction

Positron emission tomography (PET) is increasingly used to guide local treatment in glioma. The purpose of this study was a direct comparison of two potential tracers for detecting glioma infiltration, O-(2-[18F]fluoroethyl)-L-tyrosine ([18F] FET) and [11C] choline. T1 contrast-enhanced weighted MRI sequences to identify high-glioma infiltration was lower than [11C-methyl]-methionine (11C-MET) PET [7]. This is in line with the Response Assessment in Neuro-Oncology (RANO) working group that recommends amino acid PET tracers to delineate glioma extent, [8] based on two studies in which 11C-MET and 18F-2-fluoro-2-deoxyglucose were directly compared [9, 10] and more indirect evidence such as extension of PET-based tumour volumes outside MRI abnormalities [11]. To the best of our knowledge, no study has directly compared a choline tracer with [18F] FET PET for the detection of glioma infiltration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.