Abstract

A direct collocation meshless method based on a moving least-squares approximation is presented to solve polarized radiative transfer in scattering media. Contrasted with methods such as the finite volume and finite element methods that rely on mesh structures (e.g. elements, faces and sides), meshless methods utilize an approximation space based only on the scattered nodes, and no predefined nodal connectivity is required. Several classical cases are examined to verify the numerical performance of the method, including polarized radiative transfer in atmospheric aerosols and clouds with phase functions that are highly elongated in the forward direction. Numerical results show that the collocation meshless method is accurate, flexible and effective in solving one-dimensional polarized radiative transfer in scattering media. Finally, a two-dimensional case of polarized radiative transfer is investigated and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.