Abstract
AbstractWe present results of our zoom-in cosmological hydrodynamic simulations of direct collapse (DC) to supermassive black hole (SMBH) seeds with radiative transfer (RT). The DC has been modeled in dark matter halos of ∼108M⊙, using adaptive mesh refinement (AMR) code Enzo. For the first time, the baryonic collapse has been followed down to 10−7 pc (∼0.01 AU) with on-the-fly RT and the flux-limited diffusion (FLD) approximation. We find a complex behavior involving accretion flow and associated outflows driven by the radiation force. The resulting gas dynamics around the central density peak differs profoundly from that in previous works which adopted adiabatic approximation in the core. The core forms with a photosphere at ∼1 AU, and its growth starts to saturate at ∼100M⊙. The unrelaxed core radiates intermittently near the Eddington luminosity, correlated with strong anisotropic outflows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.