Abstract

We use high-resolution zoom-in cosmological simulations to model outflow triggered by radiation and thermal drivers around the central mass accumulation during direct collapse within the dark matter (DM) halo. The maximal resolution is 1.3 × 10−5 pc, and no restrictions are put on the geometry of the inflow/outflow. The central mass is considered prior to the formation of the supermassive black hole seed at a redshift of z ∼ 15.9 and can constitute either a supermassive star (SMS) of ∼105 M ⊙ surrounded by a growing accretion disk or a self-gravitating disk. The radiation transfer is modeled using the ray-tracing algorithm. Due to the high accretion rate of ∼1 M ⊙ yr−1 determined by the DM halo, accretion is mildly supercritical, resulting in mildly supercritical luminosity that has only a limited effect on the accretion rate, with a duty cycle of ∼0.9. We observe a fast development of hot cavities, which quickly extend into polar funnels and expand dense shells. Within the funnels, fast winds, ∼103 km s−1, are mass-loaded by the accreting gas. We follow the expanding shells to ∼1 pc, when the shell velocity remains substantially (∼5 times) above the escape speed. The ionization cones formed by the central UV/X-ray completely ionize the cavities. Extrapolating the outflow properties shows that the halo material outside the shell will have difficulty stopping it. We therefore conclude that the expanding wind-driven shell will break out of the central parsec and will reach the halo virial radius. Finally, the anisotropic accretion flow on subparsec scales will attenuate the UV/soft X-rays on the H2. Hence, the formation of funnels and powerful outflows around, e.g., SMSs can have interesting observational corollaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call