Abstract
We implement direct readout of the symmetric characteristic function of quantum states of the motional oscillation of a trapped calcium ion. Suitably chosen internal state rotations combined with internal state-dependent displacements, based on bichromatic laser fields, map the expectation value of the real or imaginary part of the displacement operator to the internal states, which are subsequently read out. Combining these results provides full information about the symmetric characteristic function. We characterize the technique by applying it to a range of archetypal quantum oscillator states, including displaced and squeezed Gaussian states as well as two and three component superpositions of displaced squeezed states. For each, we discuss relevant features of the characteristic function and Wigner phase-space quasiprobability distribution. The direct reconstruction of these highly nonclassical oscillator states using a reduced number of measurements is an essential tool for understanding and optimizing the control of oscillator systems for quantum sensing and quantum information applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.