Abstract

Direct cytosolic delivery of large biomolecules that bypass the endocytic pathways is a promising strategy for therapeutic applications. Recent works have shown that small-molecule, nanoparticle, and polymer-based carriers can be designed for direct cytosolic delivery. It has been shown that the specific surface chemistry of the carrier, nanoscale assembly between the carrier and cargo molecule, good colloidal stability, and low surface charge of the nano-assembly are critical for non-endocytic uptake processes. Here we report a guanidinium-terminated polyaspartic acid micelle for direct cytosolic delivery of protein and DNA. The polymer delivers the protein/DNA directly to the cytosol by forming a nano-assembly, and it is observed that <200 nm size of colloidal assembly with near-zero surface charge is critical for efficient cytosolic delivery. This work shows the importance of size and colloidal property of the nano-assembly for carrier-based cytosolic delivery of large biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.