Abstract

During brain development, the neuroepithelium generates neurons and glial cells. Proliferation and differentiation of neuroepithelial cells are controlled by a complex combination of secreted factors and more intrinsic or local mechanisms, such as lateral inhibition and asymmetric division. To obtain further insights into the signals governing neuroepithelial cell fate, we used the immortomouse to derive conditionally immortalised cell lines from mouse E10 neuroepithelium. We isolated a nestin-positive basic fibroblast growth factor (bFGF)-responsive cell line (SVE10-23) which mostly differentiate into astrocytes when cocultured with primary cortical cells. We found that, by simply lowering the cell density, SVE10-23 cells embarked on oligodendrocytic differentiation as indicated by the strong expression of galactocerebroside C and 2'3'-cyclic nucleotide 3'-phosphodiesterase. Apoptosis accompanied the differentiation, and all cells died within 1 week. We present here evidence that direct interactions between cells are the main mechanism regulating this oligodendrocytic differentiation. We demonstrate that SVE10-23 cells contact or proximity inhibit their differentiation, prevent apoptosis, and promote their proliferation. Similarly, others nestin-positive precursor cell lines and nonimmortalised bFGF-grown E10 cells were found to spontaneously differentiate at low density, thus generalising the idea that neural precursor fate is regulated by direct cell-cell interactions. The SVE10-23 cell line provides a valuable tool with which to study further the molecular components implicated in this mode of regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.