Abstract

Immobilization of rhodium (palladium)-copper-chloride catalytic systems in ionic liquids as high-boiling-point solvents affects the distribution of propane oxidation products: the acetone yield increases and the yield of alcohols decreases. Propane is oxidized to acetone, bypassing the isopropanol formation step. Methane is oxidized under more severe conditions than propane, giving methyl trifluoroacetate as the main product. Mechanisms of action of the catalytic systems based on rhodium and palladium are close to each other and likely include oxo or peroxo complexes as intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call