Abstract

AbstractEthanol can be used as a platform molecule for synthesizing valuable chemicals and fuel precursors. Direct synthesis of C5+ ketones, building blocks for lubricants and hydrocarbon fuels, from ethanol was achieved over a stable Pd‐promoted ZnO‐ZrO2 catalyst. The sequence of reaction steps involved in the C5+ ketone formation from ethanol was determined. The key reaction steps were found to be the in situ generation of the acetone intermediate and the cross‐aldol condensation between the reaction intermediates acetaldehyde and acetone. The formation of a Pd–Zn alloy in situ was identified to be the critical factor in maintaining high yield to the C5+ ketones and the stability of the catalyst. A yield of >70 % to C5+ ketones was achieved over a 0.1 % Pd‐ZnO‐ZrO2 mixed oxide catalyst, and the catalyst was demonstrated to be stable beyond 2000 hours on stream without any catalyst deactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.