Abstract

Herein, we report a synthetic strategy to convert biomass-derived unsubstituted furan to aromatics at high selectivity, especially to ethylbenzene via alkylation/Diels–Alder cycloaddition using ethanol, while greatly reducing the formation of the main side product, benzofuran, over zeolite catalysts. Using synchrotron X-ray powder diffraction and first-principles calculations, it is shown that the above methodology favors the formation of aromatic products due to ready alkylation of furan by the first ethanol molecule, followed by Diels–Alder cycloaddition with ethylene derived from the second ethanol molecule on a Bronsted acid site in a one-pot synthesis. This gives a double-promoting effect: an alkyl substituent(s) on furan creates steric hindrance to inhibit self-coupling to benzofuran while an alkylated furan (diene) undergoes a Diels–Alder reaction more favorably due to higher HOMO energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.