Abstract
The first catalytic asymmetric direct Mannich reaction of malonates and beta-keto esters has been developed. Malonates react with an activated N-tosyl-alpha-imino ester catalyzed by chiral tert-butyl-bisoxazoline/Cu(OTf)(2) to give the Mannich adducts in high yields and with up to 96% ee. These reactions create a chiral quaternary carbon center and it is demonstrated that this new direct Mannich reactions provides for example a new synthetic procedure for the formation of optically active beta-carboxylic ester alpha-amino acid derivatives. A series of different beta-keto esters with various ester substituents has been screened as substrates for the catalytic asymmetric direct Mannich reaction and it was found that the best results in terms of yield, diastereo- and enantioselectivity were obtained when tert-butyl esters of beta-keto esters were used as the substrate. The reaction of different beta-keto tert-butyl esters with the N-tosyl-alpha-imino ester gave the Mannich adducts in high yields, diastereo- and enantioselectivities (up to 95% ee) in the presence of chiral tert-butyl-bisoxazoline/Cu(OTf)(2) as the catalyst. To expand the synthetic utility of this direct Mannich reaction a diastereoselective decarboxylation reaction was developed for the Mannich adducts leading to a new synthetic approach to attractive optically active beta-keto alpha-amino acid derivatives. Based on the stereochemical outcome of the reactions, various approaches of the N-tosyl-alpha-imino ester to the chiral bisoxazoline/Cu(II)-substrate intermediate are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.