Abstract

Direct calculation of electron spin relaxation and EPR lineshapes, based on Brownian dynamics simulation techniques and the stochastic Liouville equation approach (SLE-L) [Mol. Phys., 2004, 102, 1085-1093], is here generalized to high spin systems with spin quantum number S = 3/2, 2, 5/2, 3 and 7/2. A direct calculation method is demonstrated for electron spin-spin and spin-lattice relaxation, S-, X- and Q-band EPR-lineshapes and paramagnetic enhanced water proton T(1)- NMRD profiles. The main relaxation mechanism for the electron spin system is a stochastic second rank zero field splitting (ZFS). Brownian dynamics simulation techniques are used in describing a fluctuating ZFS interaction which comprises two parts namely the "permanent" part which is modulated by isotropic reorientation diffusion, and the transient part which is modulated by fast local distortion, which is also modelled by the isotropic rotation diffusion model. The SLE-L approach present is applicable both in the perturbation (Redfield) regime as well as outside the perturbation regime, in the so called slow motion regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.